Технология газовой сварки - Страница 11

Газовая сварка - Технология газовой сварки

Подробности
 

Сущность газовой сварки

Газовая сварка — это сварка плавлением, при которой металл в зоне соединения нагревают до расплавления газовым пламенем (рис. 33). При нагреве газовым пламенем 4 кромки свариваемых заготовок 1 расплавляются вместе с присадочным металлом 2, который может дополнительно вводиться в пламя горелки 3. После затвердевания жидкого металла образуется сварной шов. К преимуществам газовой сварки относятся: простота способа, несложность оборудования, отсутствие источника электрической энергии . Оборудование поста для газовой сварки показано на рис. 34. К недостаткам газовой сварки относятся: меньшая производительность, сложность механизации, большая зона нагрева и более низкие механические свойства сварных соединений, чем при дуговой сварке. Газовую сварку используют при изготовлении и ремонте изделий из тонколистовой стали толщиной 1—3 мм, сварке чугуна, алюминия, меди, латуни, наплавке твердых сплавов, исправлении дефектов литья и др. Параметры режима. В зависимости от свариваемого материала, его толщины и типа изделия выбирают следующие основные параметры режима сварки: мощность сварочного пламени, вид пламени, марку и диаметр присадочной проволоки, флюс, способ и технику сварки. Тепловую мощность сварочного пламени определяют расходом ацетилена, проходящего за один час через горелку. Она регулируется сменными наконечниками горелки (номером наконечника). Мощность определяют по эмпирической формуле Qa=AS, где Qa — расход ацетилена, дм8; S — толщина металла, мм; А — коэффициент, определяемый опытным путем, дм3/(ч -мм); для углеродистых сталей Л = 100—130, для меди — 150, для алюминия — 75. Для сварки различных металлов требуется определенный вид пламени — нормальное ($==V0JVc2н2=1—1,3), окислительное (Р>1,3) или науглероживающее (Р<С1). Газосварщик устанавливает и регулирует вид сварочного пламени на глаз. Нормальным пламенем сваривают большинство сталей. Окислительным пламенем, которое имеет голубоватый оттенок и заостренную форму ядра, используют при сварке латуни. Науглероживающее пламя, которое становится коптящим, удлиняется и имеет красноватый оттенок, используют в основном для сварки чугуна для компенсации выгорающего при сварке углерода. Перед сваркой кромки соединяемых элементов и примыкающие к ним поверхности на участке 20—40 мм (с каждой стороны) должны быть зачищены до металлического блеска от ржавчины, масла и других загрязнений металлическими или круглыми приводными щетками, иногда напильниками или наждачной бумагой. При сварке ответственных деталей применяют пескоструйную или дробеструйную обработку, механический режущий инструмент, реже — химическую очистку специальными пастами на кислотной основе. Присадочный материал для газовой сварки применяют в виде проволоки, литых прутков и гранулированного порошкообразного металла (при наплавке твердыми сплавами). Сварочная проволока для газовой сварки и наплавки поставляется по тем же техническим условиям, что и для дуговой сварки: стальная сварочная проволока из низкоуглеродистых, легированных и высоколегированных сталей — по ГОСТ 2246—70; сварочная проволока из алюминия и алюминиевых сплавов — по ГОСТ 7871—75, сварочная проволока и прутки из меди и сплавов на медной основе — по ГОСТ 16130—72. Прутки чугунные для сварки и наплавки выпускаются по ГОСТ 2671—70 и в зависимости от назначения изготовляются следующих марок: А — для горячей газовой сварки (с общим подогревом изделия); Б — для газовой сварки с местным подогревом и для электродных стержней; НЧ-1 и НЧ-2 для низкотемпературной газовой сварки толстостенных отливок; БЧ и ХЧ — для износостойкой наплавки. Для защиты расплавленного металла от окисления и удаления образующихся окислов при газовой сварке применяют легкоплавкие сварочные флюсы. Флюсы можно вводить в сварочную ванну различными способами: подсыпать в зону сварки рукой, ложечкой; составлять пасты и наносить их на кромки свариваемых деталей и присадочный материал; вводить в порошкообразном и газообразном виде непосредственно в сварочное пламя через горелку. В качестве флюсов используют буру, борную кислоту, , окислы и соли бария, калия, лития, натрия, фтора и др. Например, при сварке чугуна чаще всего в качестве флюса используют порошкообразную прокаленную буру (Na2B407) или смесь ее с другими легкоплавкими солями щелочных металлов. Бура при разложении в зоне сварки выделяет Na20 и В203, которые активно взаимодействуют с окислами, переводя их в шлак. При сварке алюминия и его сплавов применяют флюс марки АФ-4а, содержащий 50% хлористого калия, 14% хлористого лития, 8% фтористого натрия и 28% хлористого натрия. Флюс разводят дистиллированной водой и наносят на свариваемые кромки и присадочный пруток в виде пасты. При сварке меди и ее сплавов наряду с порошкообразными флюсами на основе буры хорошее качество достигается применением флюса БМ-1, состоящего из 25% метилового спирта и 75% метилбората, или флюса БМ-2, состоящего из одного метилбората В(СН30)~ Эти флюсы вводятся в сварочную ванну в виде паров вместе с ацетиленом с помощью специального флюсопитателя, через который пропускается ацетилен перед поступлением в горелку. В пламени флюс сгорает по реакции 2В(СН30)3+202=В203+2С02+ЗН20. Борный ангидрид В203 является флюсующим веществом. Ориентировочные расходы газов при сварке газовыми горелками различной мощности приведены в табл. 4. Техника сварки. В практике применяют два способа сварки — правый и левый (см. рис. 33). При правом способе сварку ведут слева направо, сварочное пламя направляют на сваренный участок шва, а присадочную проволоку перемещают вслед за горелкой. Так как при правом способе пламя направлено на сваренный шов, то обеспечиваются лучшая защита сварочной ванны от кислорода и азота воздуха, большая глубина проплавления, замедленное охлаждение металла шва в процессе кристаллизации. Теплота пламени рассеивается меньше, чем при левом способе, поэтому угол разделки кромок делается не 90 а 60—70°, что уменьшает количество наплавленного металла и коробление. При правом способе производительность на 20—25% выше, а расход газов на 15—20% меньше, чем при левом. Правый способ целесообразно применять при сварке металла толщиной более 5 мм и металлов с большой теплопроводностью. При левом способе сварку ведут справа налево, сварочное пламя направляют на еще не сваренные кромки металла, а присадочную проволоку перемещают впереди пламени. При левом способе сварщик хорошо видит свариваемый металл, поэтому внешний вид шва лучше, чем при правом способе; предварительный подогрев кромок свариваемого металла обеспечивает хорошее перемешивание сварочной ванны. Благодаря этим свойствам левый способ наиболее распространен и применяется для сварки тонколистовых материалов и легкоплавких металлов. Мощность сварочной горелки при правом способе выбирают из расчета 120—150 дм3/ч ацетилена, а при левом — 100—130 дм3/ч на 1 мм толщины свариваемого металла. Диаметр присадочной проволоки выбирают в зависимости от толщины свариваемого металла и способа сварки. При правом способе сварки диаметр присадочной проволоки d=SI2 мм, но не более 6 мм, при левом d=S/2+1 мм, где S — толщина свариваемого металла, мм. Скорость нагрева регулируют изменением угла наклона а мундштука к поверхности свариваемого металла (рис. 35, а). Чем толще металл и больше его теплопроводность, тем больше угол наклона мундштука к поверхности свариваемого металла. В процессе сварки газосварщик концом мундштука горелки совершает одновременно два движения: поперечное (перпендикулярно оси шва) и продольное (вдоль оси шва; рис. 35). Основным является продольное движение. Поперечное движение служит для равномерного прогрева кромок основного металла и получения шва необходимой ширины. Газовой сваркой можно выполнять нижние, горизонтальные (на вертикальной плоскости), вертикальные и потолочные швы. Горизонтальные и потолочные швы обычно выполняют правым способом сварки, вертикальные снизу вверх — левым способом. Наплавку газокислородным пламене м применяют редко из-за относительно больших деформаций наплавляемых деталей. Газокислородное пламя используют главным образом для наплавки литыми твердыми сплавами. § 16. Технология кислородной резки Сущность кислородной резки. Кислородной резкой называют способ разделения металла, основанный на исполь зовании для его нагрева до температуры воспламенениятеплоты газового пламени и экзотермической (с выделением теплоты) реакции окисления металла, а для удаления окислов — кинетической энергии режущего кислорода. По характеру и направленности кислородной струи различают три основных вида резки: разделительная, при которой образуются сквозные разрезы; поверхностная, при которой снимается поверхностный слой металла; кислородным копьем, заключающаяся в прожигании в металле глубоких отверстий. На рис. 36 показана схема разделительной резки. Металл 3 нагревается в начальной точке реза до температуры воспламенения (в кислороде для стали до 1000—1200°С) подогревающим ацетилено-кислородным пламенем 2, затем направляется струя режущего кислорода /, и нагретый металл начинает гореть с выделением значительного количества теплоты по реакции 2Fe+20 2=Fe304+Q. Теплота от горения железа Q вместе с подогревающим пламенем разогревает лежащие ниже слои и распространя ется на всю толщину металла. Чем меньше толщина разрезаемого металла, тем больше роль подогревающего пламени (при толщине 5 мм — до 80% общего количества теплоты, выделяемой при резке, при толщине более 50 мм — только 10%). Образующиеся окислы 5, а также частично расплавленный металл удаляются из зоны реза 4 под действием кинетической энергии струи кислорода. Непрерывный подвод теплоты и режущего кислорода обеспечивают непрерывность процесса. Условия резки и разрезаемость.

Добавить комментарий


Защитный код
Обновить

   
© ALLROUNDER